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Abstract. A statistical model of loops on the three-dimensional lattice is proposed and is
investigated. Itis Of)-type but has loop fugacity that depends on global three-dimensional shapes
of loops in a particular fashion. It is shown that, despite this nonlocality and the dimensionality, a
layer-to-layer transfer matrix can be constructed as a product of local vertex weights for infinitely
many points in the parameter space. Using this transfer matrix, the site entropy is estimated
numerically in the fully packed limit.

1. Introduction

Loop models are interesting examples of statistical models of extended objects. They are
related to the Of) spin model [1, 2], a surface growth model [3], the self-avoiding walk [4],
the protein folding problem [5], and so on. It includes the fully packed loop model [6] and the
Hamiltonian cycle problem [7-9] as particular limits.

The partition function of an G loop model on a lattice withvV sites at the inverse
temperature is given by

Zloop(nv )C_l) — ZXNS(C)_NHNL(C) (n,x € R). (1)
ceC

The summation is taken over the gkof all the non-intersecting loop configurations drawn
along links of the lattice. The number of loops and that of sites visited by them are denoted
by N (c) andNs(c), respectively.

One may hope to study the model (1) by the transfer matrix approach: Ed£., this
is done in a simple way: one introduces link variables whose values are either occupied states
with one ofn colours or an unoccupied state and lets them interact on sites. A transfer matrix
is written as a product of vertex weights straightforwardly.

Forn ¢ Z., however, the partition sum (1) cannot be rewritten in terms of local degrees of
freedom such as link variables in a simple way. Itis not trivial to haeeal transfer matrixt.
| say a transfer matrix iEpcal when its component is written as a product of weights each of
which is determined by the local state configuration around a lattice site.

Itis surprising that, in two dimensions,¢ Z., models admit a mapping onto a state sum
model with a local vertex weight and thus have local transfer matrices [10-12]. In fact, by
choosings € C satisfyingn = s + 57, Zoop(n, x 1) can be written as

ZlOOp(”v x—l) — Zst(L')—N(S +S—1)NL(L') — Zst(C)—N 1_[ s:kl (2)

ceC ceC LeL(c)

T The use of the connectivity basis is discussed in section 5.4.
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whereC is the set of loop configurations with a direction associated with each loop. The set
L(c) consists of all the directed loops in a configuratior loop with the (counter-)clockwise
direction is given a weight** (s~1). This weight can be realized by associatiig*(s~/4)

with each right(left)-turn site and the model can be regarded as a state sum model with a local
vertex weight. This trick has made the study of two-dimensional loop models very fruitful.

Physics of loops in three dimensions is very attractive. It is realistic in the context of
condensed matter physics. There has been a continuous suspicion that two-dimensional ones
have missed some importantingredientin real physics, e.g. the protein folding problem. Three-
dimensional loops also have rich mathematical structures. For instance, loops can be knotted
or linked in three dimensions [13]. It is noted that a number of attractive proposals have been
made to generalize the loop model to higher dimensions [14, 15].

The analysis of loop models and their generalizations in higher dimensions is, however,
extremely hard to perform. Needless to say, the number of configurations increases
considerably. For fugacity ¢ Z., which includes the interesting case of the self-avoiding walk
(n = 0), no way of constructing local transfer matrices is known. This is because specialties
of two dimensions cannot be used to simplify problems any more. The mapping (2) makes
use of the fact that a directed loop in two dimensions turns around just once either clockwise
or counter-clockwise. It appears that this kind of trick never works in higher dimensions.

In this paper, | propose a model which generalizes (1) in a fashion specific to three
dimensions. It is furnished with loop fugacity that depends on the global three-dimensional
shape of loops. | show that, despite this generalization which makes the model even more
nonlocal, a local transfer matrix for the system can be constructed for a number of choices of
fugacity. These choices include the ones that give zero or non-integer weight to loops.

This paper is organized as follows. In section 2, | define a loop model in three dimensions
generalizing (1). Its local transfer matrix is constructed for a family of points in the parameter
space in section 3. In section 4, this transfer matrix is numerically diagonalized to yield an
estimate of the site entropy in the fully packed limitt = 0. In section 5, | discuss my results
and their relation to combinatorial problems. In the appendix, a technical issue on the block
diagonalization of the transfer matrix is addressed.

2. Generalized fugacity

| define a statistical model of loops on the three-dimensional simple cubic latfice
{Z?zlmiei e R3m; € Z}, e - e; = &;;. The partition function is given by

Zioopln](x ™) =) MO T n(aw)) €)

ceC LeL(c)

whereL(c) is the set of loops in a configuratian The loop fugacity: is now promoted to a
function which depends on the shapd.o& £(c) through a quantitd (L) € R defined below.

To defineA(L), one begins with associating a closed trajectory on the unit sphere with
each loopL. One picks a direction foE. On every point: € L C R® except for sites where
L makes a turn, there is a unit tangential veet@e) to L; it is either of+e;,i = 1, 2, 3. One
may regardv(z) as a mapping fronk\ (‘turn-sites’) to the unit sphers?.

As one walks alond., v(x) jumps from a point to another as?. One can naturally
interpolate these points to define a continuous trajeatary. — S2. One has only to declare
thatv(x) moves along the geodesic (of Iengﬁtﬁ) on §? at each turn-site. This is equivalent
with smoothing a loop in neighbourhoods of turn-sites keeping it within the plane (figure 1).
Then one defined (L) to be the oriented area encircled in the right of the trajecé@m). On
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L)

(a)

Figure 1. The definition ofA(L). (a) The original loopL with a direction associatedb) The
loop smoothed at turn-sitesc)(Trajectory of the tangent vector on the unit sphere. An area of
A(L) = 2r is enclosed.

the latticeZ2, A(L) takes values
A(L) = imm(m € ). (4)

In two dimensions, the quantity(L) takes values-2 and this signature corresponds to that
of s*1in (2). Therefore (3) incorporates an essential ingredient of three-dimensional loops
and is regarded as a natural generalization of (2).

As is evident from the above construction, there is certain ambiguity for the valug.of
First, because the trajectory is drawn on a closed surface of are&(4.) is well-defined up
to 4r. Second, the signature a@f(L) is changed when the picked directionlois reversed.
I require that:(-) in (3) absorbs this ambiguity. Hence, it should satisfy

n(A) = n(A +4m) (5)
n(—A) = n(A). (6)
Equations (4)—(6) imply that the fugacity functian-) can be specified by five parameters
n(A), A=0,in, 7 3n 27
In spite of the above restriction or{A), the model (3) includes many interesting cases.
Consider, for example, fugacity

n(A) = noss’ (A) @)
with ng € R and
1 if (4 —5b)=0moda
(a) _ T !
% (A) = { 0 otherwise. ®

The sum in (3) is then restricted to configurations which consist only of loops with the oriented
areaA = 0 mod 4r. It should be interesting to compare the site entropy with that of the model
with n(A) = ng. Itis also tempting to ask whether such an additional constraint changes the
critical behaviour or not. The present case reminds one of the fully packed loop model in two
dimensions. Its universality class differs from that of densely packed loop phase when the
additional constraint that the loop length must be even is imposed [12, 16].

3. Transfer matrices from local vertex weights

In order to construct a local layer-to-layer transfer matrix for the loop model (3), | define a
vertex model and show that it is equivalent with (3).

The local degree of freedogrof the vertex model lives on each littk, r +e;), r € Z3. It
takes one of three values, —, and—(empty). On each site, six neighbouring link variables
interact by the vertex weighw defined in figure 2, wherg(w) is a function that satisfies

s(A1) x s(A2) = s(A1+ A2) ()]
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Figure 2. Vertex weightsW for Zyerteds](x™1).

and is specified further below. The partition function of the vertex model is
Zienels]x™ = Y [] Wdz(r,r £e))). (10)

=<,—>,— reZ3
Evidently, the partition function (10) has a local transfer matrix which is a produit.of
Now | show that (10) for an appropriates equivalent with (3). Because the weighitis
nonzero only when there is one incoming and one outgoing arrow, contribution to the partition
sum (10) comes only from the sébf directed loop configurations:

Zuerols](x ™) = ) MO T [ I1 s(w(r»] (11)

ceC LeL(c) - reLnZ3

wheres(w(r)) is the weight for the vertex at € Z2 in figure 2.
The factor in the square bracket in (11) is associated with a directed loop comgonent
To evaluate this quantity, it is crucial to observe that

AL = ) o). (12)
reLNZ3
Actually, the weight system in figure 2 is designed to have this property in [17-19] in the
context of random walk with a spin factor [20,21]. Combining the properties (12) and (9), one
finds that the factor in the square bracket is simgly(L)).
Using the same trick as that used in (2), one can further write the partition function (11)
as a sum over undirected loop configurations:

Zuerels](xh) = Y MOV T (s(AL) + s(—A(L))). (13)
ceC LeL(c)
Therefore, ifn(A) in the loop model (3) can be written as
n(A) = s(A) +s(=A) (14)

with a functions that satisfies (9), then the vertex model partition functifyeds](x 1)
defined above is equal to (3).

The requirement (9) together with the restrictions (4)—(6). o#) forcess(A) to have a
simple form:

s(A) =¢&/4 (15)
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Table 1. The generalized fugacity which generates the semigroup of allowed models. The
functions\’ () is defined in equation (8).

J  n@)

0 2"?=2

1 (&) (4 4 4 4 (4)

3 20" =8+ ﬁ(‘sl/z +87,5 = 830 = 5)0)

1 26% -8

3 @ @ @ L @ @ @

3 206" =87 - ﬁ(‘sl/z +87/5 = 83/5 — 853)
@ _ D

2 265" sty

o0 =0

2 s

with J € Z/2. Itis enough [17] to consider the casés= 0, 3, 1, 3 and 2 because of (4).
Hereafter, one introduces a shorthand notation:

Z;(x7Y) = Zigopln(A) = €74 + eV A (x7Y). (16)

The vertex weights af = 0 and 2 enjoy a special propetyw) = s(—w). This enables
one to define a model with only two microscopic sta¢esnd—:

Zieneds1™H = Y [ Wlz(r.r £e)h
=<, — reZ3
=Y x0TV TT saw)) (17)
ceC LeLl(c)
which | denote byZy andZ5.
The fugacity functions corresponding fo= 0, 3, 1, 3,
They indeed givet(A) < 0 orn(A) ¢ Q for some loops.
Although only a finite number of vertex modefs= 0, % 1, g‘ 2,0 and 2 have been
constructed above, it is possible to construct an infinite number of ones by taking the direct
sum of the space of their microscopic states. More precisely, one generalizes the link variable
to take one of 2 + 1 (¢ € Z.) states:<—, — with thek labelling coloursc = 1, ..., g and
an uncoloured empty state. Introducing parameter, € {0, % 1, g 2}, the vertex weight
assignments in figure 2 are supplemented by additional rules:

2,0 and 2 are listed in table 1.

o If the both two arrows have theh colour, therW = &7k,
o If the two colours do not agreéy = 0.

The cased, = 0/, 2’ are handled in the obvious manner.
The fugacity of the ‘direct sum’ modél ;¢ /.., IS Simply the sum:

q . .
n(A) =Y [(€"* +e ) x B(Jy] (18)
k=1
1 J=01%122
B — 9 21 bl 2’ 7 19
One immediately notices that
Zogo = Zo Lygz = Z>. (20)

Thus the fugacity functions expressible via vertex models form an infinite semigroup under

additiont generated by = 0, 3,1, 3 and 2.

T This direct sum operation may be used for the lattice construction [17-19] of higher-spin three-dimensional field
theories.
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One can also take the ‘tensor product’ of the space of microscopic stafgs afidZ,
to define a mode¥ ;¢ ,. Let the link variable take five valugs, z2) =11, 14, }1. 1|, and
||. The vertex weight is defined to be the product & with J = J; andJ,. Then the loop
fugacity becomes

n(A) = [(€ + e x B(Jy)] x [(€724 + e7%24) x B(L)]. (21)

However, a new fugacity function cannot be realized because the partition futGtign is
equivalent with an appropriate direct sum

VAR-Y S 271®~--697q (22)
corresponding to the decomposition rule of the representatiGi/¢R).

4. Entropy estimates

| numerically diagonalize the transfer matrices constructed in section 3. Throughout this
section, | concentrate on the fully packed limit! = 0 where all the sites are visited by a
loop. This simple case is in fact a very interesting case; in two dimensions, this limit yields a
new universality class with a shifted central charge on several bipartite lattices and has been
attracting much attention [16,22-24]. It would be interesting to look at the limit where the two
strong constraints are combined: the fully packing constraifit= 0 and the constraint (7)
on the shape of loops.

The site entropy in the thermodynamic limit is defined by

. 1
fln)(00) = lim 109 Zioopln] (x~* = 0). (23)

| evaluate this quantity on quasi-one-dimensional geométryx L, x L3, Lz — oo while
L, L, are kept finite by calculating the largest eigenvalue of the transfer matrix in an
appropriate sector.

Let T be the layer-to-layer transfer matrix ira(vertical) direction for the vertex model
defined in (10). TherT" acts on linear combinations of arrayslof x L, vertical (coloured)
arrows. One can take either hard-wall or periodic boundary condition in the horizontal
directions.

It is important to note that the transfer matixcommutes with the operator giving the
net flow of arrows okth colour in +e3 direction:

dy = (# M) — (# Le) (24)
which is understood as
for J, = 0’ and 2. ThusT is block diagonalized as

T=1, d=(d,... d,). (26)

d
The quantity (23) is obtained as
, 1 0
fIn](oo) = L1,|L|ZTLOO il log|rg(L1, Lo)| (27)

where){i(Ll, L,) is theith largest eigenvalue dfy (L3, L,). The conditiond = 0 excludes
unwanted configurations that have unbalanced arrows travelling along the infinite direction.



Table 2. The site entropy estimated numerically; x L is the size of a layer while (p) and (h) mean periodic and hard-wall boundary conditions in a

layer.

J 2x 2(h) 3x 3(h) 3x 4(h) 2x 2(p) 3x 3(p) 3x 4(p) 4x 4(p)

0 0.542 02495 0.591454 47 0.63524092 1.0585126 0.83841678 0.83340128 —

% 0.271236 80 0.33576248 0.350509 51 0.79451346 0.559 00063 0.558 959 24 —

1 0.515859 27 0.50234791 0.556 462 23 0.97170402 0.698126 31 0.698 32061 —

g 0.35592318 0.35908194 0.37136801 0.79451346 0.57435935 0.494 96387 —

2 0.494 996 47 0.45468972 0.516 15498 1.0406166 0.662007 16 0.67440981 —

o 0.462989 39 0.556 506 97 0.600729 54 0.91847381 0.796 31788 0.80135760 0.81947983
2 0.38697370 0.376 95844 0.42272584 0.87898824 0.556 089 04 0.58497412 0.609 31946

suoisuawip aaiy) ul Aloebn) pazijeiauab yum [spow dooT
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Shown in tables 2 and 3 are the finitg; L, resultst. The asymmetric Lanczos algorithm is
utilized for the present sparse eigenproblem.

The obstacle in makind.; and L, large in the actual numerical work is of course the
exponential growth of the dimensionality of the transfer matrix. The selectidn-0D sector
helps to reduce the dimensionality, though the improvement is polynomial. For a direct sum
Z .01, the dimensionality is estimated to be

u/2
dim(d = Osectoy ~ (1 + 2u + p)lrtz x 277 (L> (28)
4 Lle
wherep = #{k|J, = 0 or J, = 2'}, u = g — p. One notices that it is better to recéstq,
asZ, if one is interested in itd = 0 sector.

The exponential growth is severe even after restricting tadtke O sector. In order to
increaseL1L, as much as possible within the available computer resources, | have further
decomposedy with respect to the eigenvalue of shift (lattice momentum) operator for the
periodic boundary case where the translational symmetry is present. | have looked at the zero-
momentum sectofy®? as described in the appendix. It is quite natural to expect that the
largest eigenvalue lies there. By this decomposition, the dimensionality of the eigenproblem
is reduced, at most, byL.1L,) 1. As a drawback, the matrik®? becomes less sparse than
the originalTy. With both effects combined, some improvements in the memory usage and the
CPU time are observed. Thus the analysis of larger systems becomes possible for the periodic
boundary case, as seen in tables 2 and 3.

5. Discussions

In the comparison between the periodic and the hard-wall boundary conditions, one notices
that the periodic case always has larger site entropy. This is because many of the loops that
wind nontrivially in the horizontal directions satis#/(L) = 0 and the loops wittA (L) = 0
contribute to every partition sum with a positive fugacity.

The numerical works in this study have been carried out on modest workstations.
Unfortunately, information in the thermodynamic lindit, L, — oo is out of reach in the
present analysis. For the study of criticality, [17], where random walks with the weight in
figure 2 are studied, is quite suggestive. It is reported that Euclidean symmetry is not always
recovered even in the continuum limit.

| discuss relations with combinatorial problems below.

5.1. Even and odd number of loops of a specific type

For most allowed values of, the loop fugacity takes both positive and negative values. Some
interesting combinatorial information is encoded in these models. For example, the linear
combination%(z(y + Z2) counts the number of loop configurations such that there are even
(odd) number of loops for whicR A(L) = 1 mod 2, e.g.,

>

ceC 1
even 5

1
Cecodd%

3(Zo £ Z2) = (29)

T I have also measured several leading eigenvalu@s wfith d = (dy, ..., dy), dx = 0,%1. These are related to
correlation length of operators in the theory. These results will be reported elsewhere.



Table 3. The site entropy estimated numerically; x L is the size of a layer while (p) and (h) mean periodic and hard-wall boundary conditions in a

layer.

B I n 2% 2(h) 3x 3(h) 2% 2(p) 3% 3(p) 3x 4(h) 3x 4(p)
Va2 255" 052330515  0.57390934  1.0502400  0.81503626  0.61935581  0.81580656
080 4 0.64498133  0.65020710  1.2354255  0.90747958  — —
082 45" 0.63331428  0.62765833  1.232054 088008432  — —
0Ve2el 455 0.63216104  0.61664018  1.2110124  0.86121744  — —
000®0®0 8 0.76911076 14501153 10108338  — —
00002@2 8ss” 1.3280134 1.4490048  0.98982172  — —
0olele? 852 0.759852 45 1.4364447 097947213  — —
ve2eleled s’ 0.36464934 1.3863922  0.88604978  — —
1g3 465" —s5")  0.47382047 041770663  1.0397208  0.63630800  — —
00 3 ¢Q 040013109 054670471 11686609  0.84652598  — —
0@ 3 ¢Q 044457252 055636026  1.1686609  0.84694306  — —
0®0® 3 ¢Q 048094569 057807813  1.2520659  0.62795992  — —

suoisuawip aaiy) ul Aloebn) pazijeiauab yum [spow dooT
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Figure 3. Whenuy, the tangent vector at(xo), is parallel-transported along
the trajectory or$2, it receives holonomy whose magnitude (ar)les equal
to the oriented ared (L) the path encloses.

whereCeverodd,q IS the subset of and is defined by the following properties:

o ¢ € Cevenodd.« CONtains even (odd) number of loops WARL) /ar = 1 mod 2.
o All other loops inc € Ceverodd),« SatisfyA(L)/ar = 0 mod 2.

Similarly, the quantitie:%(z(y@z/ + Z) and%(Z(y@g/@l +7Z ) are interpreted as the sums

1.3
293
Overcever{odd),l andcever{odd),Z-

Of the twoZ in (29), the one with the larger leading eigenvalue dominates the sum in the
limit Ly — oo studied in section 3. In finite geometries, both terms contribute to yield an

exact number.

5.2. Self-avoiding walk

The partition function (1) in the limitz — O corresponds to the enumeration of self-
avoiding walks. Self-avoiding walks in three dimensions have mainly been studied by the
exact enumeration method due to the lack of transfer matrix formalism as pointed out in the
introduction.

The model | propose in this paper can be regarded as a step forward to overcome this

difficulty; in the modelZy g2, Zog2re1 andZ 1 . 3, thefugacity is set zero for families
0/692’@5691695

of loops. This is, however, achieved at the cost of having larder another family of loops.
Within the present construction, loops witt{L) = 0 mod 4t cannot have weights different
from the number of possible link states. Thus the partition function listed above serve only as
a very loose upper bound for the entropy of self-avoiding walks.

The problem of construction of a local transfer matrix to enumerate self-avoiding walks
on three-dimensional lattices still remains open.

5.3. Mapping to ribbon configurations

The oriented area defined in (3) has a nice geometric interpretation as holonomy. The tangent
vectorv(z) moves along a trajectory o§?. Let the unit vector tangential to this trajectory at
v(z,) bewu, (figure 3). Consider the parallel transport (in the sense of Riemannian geometry)
of ug along the trajectory(x) on $2.

Whenuy is transported back to(xo), it gains some holonomy (the anglen figure 3).
This holonomy angle is given by the integration of the scalar curvatusé o¥er the domain
encircled by the trajectory and is nothing but the oriented ax&a. In the real spacgé? c R3,
the holonomy described above is nicely kept track of by broadening the loop segment to a
‘ribbon’ with the distinction of the right and the reversed sides. The parallel transportation can
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<=
(@) (b) (©)

Figure 4. Examples of allowed ways of bending ribbons at sites (except for the ones indicated by
grey arrows). The holonomy is accumulated at the sites indicated by grey arrows. The right and
the reverse sides of ribbons are represented by white and black colours.

be recasted as a rule of bending ribbons on sites, which is shown in figure 4. Among the loop
configurations shown in figure 4, the partition st With fugacityn = 532, 55" andsS”?
receives contribution frorf(a)}, {(a), (b)}, and{(a), (b), ()}, respectively.

Forn = 48(()2), the sum in (3) is over ribbon loop configurations without mismatch. In that
interpretation, the coefficient four is naturally regarded as the number of directions the right
side can face. Therefor&qop[n = 4832)](x‘1) is nothing but the generating function of the
number of allowed ribbon configurationst.

Similarly, the partition sum fom = 2851) can be interpreted as the sum over the
configurations of ribbons without the distinction between the right and the reverse sides, while
in the caser = 6((,1/2), the loop segment is just a chord. This interpretation suggests that (3)
may be regarded as a model of polymers with various partially broken axial symmetry by, for
instance, the presence of side chains.

5.4. Comparison with the connectivity basis

The connectivity basis [25, 26] is very powerful in that one can always write a transfer matrix
for a loop model with respect to it. It has been very useful for numerical calculation in two
dimensions.

Nevertheless, | have avoided the use of the connectivity basis in this paper. The reason
is the following. First, its fundamental degrees of freedom are not the link variables and
the transfer matrix with respect to it is not local. Local transfer matrices have merits even
in two dimensions. Namely, it paved the way to the Bethe ansatz solution [27, 28] and the
conformal field theoretic description [29,30] via Coulomb gas representation. Second, in three
dimensions and higher, the size of connectivity basis grows considerably because of the lack
of the planarity constraint. It is not clear if it is effective to perform numerical calculation in
this basis. In two dimensions, the present basis is as good as the connectivity one [12, 22].

| suppose it is very important to see how useful the connectivity basis in three dimensions
is and to try to improve the efficiency of the calculation in that basis.
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Appendix. Projection to zero momentum subspace

In this short note, | describe the block diagonalization of the transfer matrix with respect to the
eigenvalues of the lattice momentum operators. The zero-momentum subspace and a reduced
transfer matrix which acts on it are explicitly constructedt.

One may start with the2q + 1)fl2-dimensional whole space of coloured arrow
configurations or an eigenspace of the operatorOne considers the matrix elements in
the basisy;, i = 1,...,m), each of which represents a single arrow configuration such as

N
Tl/l,' = ZTLJM/ (30)

j=1
In this natural basis, the matrik becomes sparse.
Let S1 and S, be discrete shift operators in the horizontal directions. Then the vectors

L1—1L,-1
vi= Y Y (5)“(S2)"u; (31)

a=0 b=0

are zero-momentum ones.
One classifies the index setfs . .., m} = ¥, V; by an equivalence relation~ j <

v; =v;. Thenl =1, ..., M labels the zero-momentum subspace. The/)-component of
the block matrix is simply
(1%, =317 eV (32)
JEV,

This procedure is fairly easy to implement in the sparse algorithm.

Evidently, a slight modification of the above procedure enables one to focus on a chosen
nonzero momentum subspace. It will be useful for identifying excited states.

It is noted that the above block decomposition can be applied even if the seam factor is
present, e.g. to two-dimensiona{/) model with cylinder topology. One can make the system
translationally invariant by distributing the seam factor among all horizontal links. | have
checked that this prescription improves the efficiency of the the enumeration of Hamiltonian
cycles perfomed in [22] although the weight system becomes system-size dependent.
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